Lennard-Jones-Potential

ULJ(r)=4ϵ[(σr)12(σr)6]FLJ(r)=dU(r)dr=4ϵσ[12(σr)136(σr)7] \begin{aligned} U_\mathrm{LJ}(r) & = 4\epsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^{6} \right] \\ F_\mathrm{LJ}(r) = -\frac{\mathrm{d} U(r)}{\mathrm{d}r} & = \frac{4\epsilon}{\sigma} \left[ 12 \left( \frac{\sigma}{r} \right)^{13} - 6 \left( \frac{\sigma}{r} \right)^{7} \right] \\ \end{aligned}
rryy
  y=ULJ(r)\;y = U_\mathrm{LJ}(r)
  y=FLJ(r)\;y = F_\mathrm{LJ}(r)
0.51.01.52.02.53.0−2.00.02.0−3.0−2.5−1.5−1.0−0.50.51.01.52.53.0
Updating ...
σ\sigma
1
ϵ\epsilon
1